Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(17): 15249-15258, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37151496

RESUMO

The preparation of flexible electrode, including working electrode (WE) and counter electrode (CE), for dye-sensitized solar cells (DSSCs) utilizing metal oxides using environmentally friendly sustainable TEMPO-oxidized cellulose nanofibers (TOCNFs) is reported in this work. A new type of flexible electrode for the DSSCs, which were made of cellulose nanofiber composites with nickel hydroxide [CNF/Ni(OH)2] substrate films and cellulose nanofiber composites with polypyrrole (CNF/PPY). Nickel hydroxide, Ni(OH)2, has been prepared hydrothermally in the presence of TOCNFs, [TOCNF@Ni(OH)2]. Similarly, the conductive polymer substrate has also been prepared from a composite consisting of TOCNF and PPY, TOCNF@ PPY film, by means of polymerization for the CE. Overall, the prepared electrodes both WE from CNF/Ni(OH)2 substrates and CE from the TOCNF@PPY substrate film were revealed as the novelty of this work and which no one has introduced previously. Although NiO nanoparticles (NPs) coated on the Ni(OH)2/TOCNF electrode also produced a good power conversion efficiency, PCE (0.75%); nevertheless, the NiO NP treatment with carbon dots boosted the efficiency up to 1.3%.

2.
Nanomaterials (Basel) ; 12(22)2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36432368

RESUMO

This work reports cascade Förster resonance energy transfer (FRET)-based n-type (ZnO) and p-type (NiO) dye-sensitized solar cells (DSSCs), discussing approaches to enhance their overall performance. Although DSSCs suffer from poorer performance than other solar cells, the use of composites with carbon dot (Cdot) can enhance the power conversion efficiency (PCE) of DSSCs. However, further improvements are demanded through molecular design to stimulate DSSCs. Here, a photosensitized system based on a cascade FRET was induced alongside the conventional photosensitizer dye (N719). To N719 in a DSSC is transferred the energy cascaded through donor fluorescence materials (pyrene, 3-acetyl-7-N,N-diethyl-coumarin or coumarin and acridine orange), and this process enhances the light-harvesting properties of the sensitizers in the DSSC across a broad region of the solar spectrum. PCE values of 10.7 and 11.3% were achieved for ZnO/Cdot and NiO/Cdot DSSCs, respectively. These high PCE values result from the energy transfer among multi-photosensitizers (cascade FRET fluorophores, N719, and Cdot). Moreover, Cdot can play a role in intensifying the adsorption of dyes and discouraging charge recombination on the semiconductor. The present results raise expectations that a significant improvement in photovoltaic performance can be attained of DSSCs exploiting the cascade FRET photonics phenomenon.

3.
ACS Omega ; 7(12): 10796-10803, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35382288

RESUMO

Metal oxide nanoparticles (MO-NPs) are presently an area of intense scientific research, attributable to their wide variety of potential applications in biomedical, optical, and electronic fields. MO-NPs such as zinc oxide nanoparticles (ZnO-NPs) and others have a very high surface-area-to-volume ratio and are excellent catalysts. MO-NPs could also cause unexpected effects in living cells because their sizes are similar to important biological molecules, or parts of them, or because they could pass through barriers that block the passage of larger particles. However, undoped MO-NPs like ZnO-NPs are chemically pure, have a higher optical bandgap energy, exhibit electron-hole recombination, lack visible light absorption, and have poor antibacterial activities. To overcome these drawbacks and further outspread the use of ZnO-NPs in nanomedicine, doping seems to represent a promising solution. In this paper, the effects of temperature and sulfur doping concentration on the bandgap energy of ZnO nanoparticles are investigated. Characterizations of the synthesized ZnO-NPs using zinc acetate dihydrate as a precursor by a sol-gel method were done by using X-ray diffraction, ultraviolet-visible spectroscopy, and Fourier transform infrared spectroscopy. A comparative study was carried out to investigate the antibacterial activity of ZnO nanoparticles prepared at different temperatures and different concentrations of sulfur-doped ZnO nanoparticles against Staphylococcus aureus bacteria. Experimental results showed that the bandgap energy decreased from 3.34 to 3.27 eV and from 3.06 to 2.98 eV with increasing temperature and doping concentration. The antibacterial activity of doped ZnO nanoparticles was also tested and was found to be much better than that of bare ZnO nanoparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...